After reading this post on Creative Applications and then going to Inigo Quilez’s website and reading his post about warping, I decided to have some fun with GLSL, Perlin Noise and Openframeworks. The results are just beautiful:

I am just posting a small code example I did, if somebody wants to take things further or just play around.

**Openframeworks Draw Code:**

ofBackground(0, 0, 0);
shader.begin();
shader.setUniform1f("time", ofGetFrameNum() * 0.001);
ofRect(0,0,1024,768);
shader.end();

**Vertex Shader:**

uniform float time;
void main() {
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

**Fragment Shader:**

uniform float time;
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec2 fade(vec2 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec2 P)
{
vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
Pi = mod289(Pi); // To avoid truncation effects in permutation
vec4 ix = Pi.xzxz;
vec4 iy = Pi.yyww;
vec4 fx = Pf.xzxz;
vec4 fy = Pf.yyww;
vec4 i = permute(permute(ix) + iy);
vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
vec4 gy = abs(gx) - 0.5 ;
vec4 tx = floor(gx + 0.5);
gx = gx - tx;
vec2 g00 = vec2(gx.x,gy.x);
vec2 g10 = vec2(gx.y,gy.y);
vec2 g01 = vec2(gx.z,gy.z);
vec2 g11 = vec2(gx.w,gy.w);
vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
float n00 = dot(g00, vec2(fx.x, fy.x));
float n10 = dot(g10, vec2(fx.y, fy.y));
float n01 = dot(g01, vec2(fx.z, fy.z));
float n11 = dot(g11, vec2(fx.w, fy.w));
vec2 fade_xy = fade(Pf.xy);
vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return 2.3 * n_xy;
}
// Classic Perlin noise, periodic variant
float pnoise(vec2 P, vec2 rep)
{
vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, rep.xyxy); // To create noise with explicit period
Pi = mod289(Pi); // To avoid truncation effects in permutation
vec4 ix = Pi.xzxz;
vec4 iy = Pi.yyww;
vec4 fx = Pf.xzxz;
vec4 fy = Pf.yyww;
vec4 i = permute(permute(ix) + iy);
vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
vec4 gy = abs(gx) - 0.5 ;
vec4 tx = floor(gx + 0.5);
gx = gx - tx;
vec2 g00 = vec2(gx.x,gy.x);
vec2 g10 = vec2(gx.y,gy.y);
vec2 g01 = vec2(gx.z,gy.z);
vec2 g11 = vec2(gx.w,gy.w);
vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
float n00 = dot(g00, vec2(fx.x, fy.x));
float n10 = dot(g10, vec2(fx.y, fy.y));
float n01 = dot(g01, vec2(fx.z, fy.z));
float n11 = dot(g11, vec2(fx.w, fy.w));
vec2 fade_xy = fade(Pf.xy);
vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return 2.3 * n_xy;
}
float fbm(vec2 P, int octaves, float lacunarity, float gain)
{
float sum = 0.0;
float amp = 1.0;
vec2 pp = P;
int i;
for(i = 0; i < octaves; i+=1)
{
amp *= gain;
sum += amp * cnoise(pp);
pp *= lacunarity;
}
return sum;
}
float pattern(in vec2 p) {
float l = 2.5;
float g = 0.4;
int oc = 10;
vec2 q = vec2( fbm( p + vec2(0.0,0.0),oc,l,g),fbm( p + vec2(5.2,1.3),oc,l,g));
vec2 r = vec2( fbm( p + 4.0*q + vec2(1.7,9.2),oc,l,g ), fbm( p + 4.0*q + vec2(8.3,2.8) ,oc,l,g));
return fbm( p + 4.0*r ,oc,l,g);
}
float pattern2( in vec2 p, out vec2 q, out vec2 r , in float time)
{
float l = 2.3;
float g = 0.4;
int oc = 10;
q.x = fbm( p + vec2(time,time),oc,l,g);
q.y = fbm( p + vec2(5.2*time,1.3*time) ,oc,l,g);
r.x = fbm( p + 4.0*q + vec2(1.7,9.2),oc,l,g );
r.y = fbm( p + 4.0*q + vec2(8.3,2.8) ,oc,l,g);
return fbm( p + 4.0*r ,oc,l,g);
}
void main() {
vec2 q = gl_FragCoord.xy / vec2(640.0,480.0);
vec2 p = -1.0 + 2.0 * q;
vec2 qq;
vec2 r;
float color = pattern2(p,qq,r,time);
vec4 c = vec4(color,color,color,color);
c *= 3.5;
gl_FragColor = c;
}